

InvenSense Inc. 1197 Borregas Ave, Sunnyvale, CA 94089 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com

Document Number: RM-ITG-3050-00 Revision: 1.1 Release Date: 05/19/2011

# ITG-3050 Register Map and Register Descriptions Revision 1.1



# CONTENTS

| 1 | REVIS | SION HISTORY                                  | 3  |
|---|-------|-----------------------------------------------|----|
| 2 | PURP  | OSE AND SCOPE                                 | 4  |
|   | 2.1   | PRODUCT OVERVIEW                              | 4  |
|   | 2.2   | SOFTWARE SOLUTIONS                            |    |
| 3 | REGI  | STER MAP                                      | 6  |
| 4 | REGI  | STER DESCRIPTIONS                             | 7  |
|   | 4.1   | REGISTER 0 – WHO AM I                         |    |
|   | 4.2   | REGISTERS 12 TO 17 – GYRO OFFSETS             | 7  |
|   | 4.3   | REGISTER 18 – FIFO ENABLE                     |    |
|   | 4.4   | REGISTER 19 – AUX (ACCEL) VDDIO               | .9 |
|   | 4.5   | REGISTER 20 – AUX (ACCEL) SLAVE ADDRESS       |    |
|   | 4.6   | REGISTER 21 – SAMPLE RATE DIVIDER             |    |
|   | 4.7   | REGISTER 22 – DLPF, FULL SCALE, EXTERNAL SYNC |    |
|   | 4.8   | REGISTER 23 – INTERRUPT CONFIGURATION         |    |
|   | 4.9   | REGISTER 24 – AUX (ACCEL) BURST READ ADDRESS  |    |
|   | 4.10  | REGISTER 26 – INTERRUPT STATUS                | 14 |
|   | 4.11  | REGISTERS 27 TO 40 – SENSOR REGISTERS         | 14 |
|   | 4.12  | REGISTERS 58 TO 59 – FIFO COUNT               |    |
|   | 4.13  | REGISTER 60 – FIFO DATA                       | 16 |
|   | 4.14  | REGISTER 61 – USER CONTROL                    | 19 |
|   | 4.15  | REGISTER 62 – POWER MANAGEMENT                | 19 |

NO'



## 1 Revision History

| Revision<br>Date | Revision | Description                                                        |
|------------------|----------|--------------------------------------------------------------------|
| 04/15/2011       | 1.0      | Initial Release                                                    |
| 05/19/2011       | 1.1      | Sec. 2.2 Added additional information to software solution section |



## 2 Purpose and Scope

This document provides information regarding the register map and register descriptions for the ITG-3050™.

#### 2.1 Product Overview

The ITG-3050 is a single-chip, digital output, 3-axis MEMS gyro IC which features a 512-byte FIFO and a secondary I2C sensor bus that interfaces to third party digital accelerometers. The combination of FIFO and dedicated sensor bus allows the ITG-3050 to directly acquire data from an off-chip accelerometer without intervention from an external processor. This both lowers the traffic on the primary (application processor) bus interface and saves power by allowing the system processor to burst read sensor data from the ITG-3050's FIFO and then go into a low-power sleep mode while the device collects more data.

The ITG-3050 features a 3-axis digital gyro with programmable full-scale ranges of  $\pm 250$ ,  $\pm 500$ ,  $\pm 1000$ , and  $\pm 2000$  degrees/sec (dps or °/sec), which is useful for precision tracking of both fast and slow motions. Rate noise performance sets the industry standard at 0.01 dps/ $\sqrt{Hz}$ , providing the highest-quality user experience in pointing, gaming, user interface, and other motion-based applications. Factory-calibrated initial sensitivity reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock with 1% variation from -40°C to 85°C, an embedded temperature sensor, programmable interrupts, and a low 5.9mA supply current. The ITG-3050 comes with an I2C serial interface, a VDD operating range of 2.1 to 3.6V, and a VLOGIC interface voltage from 1.71V to 3.6V.

By leveraging its patented and volume-proven Nasiri-Fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the ITG-3050 package size down to a revolutionary footprint of 4x4x0.9mm (QFN), while providing the highest performance, lowest noise, and the lowest cost semiconductor packaging to address a wide range of handheld consumer electronic devices. The device provides the highest robustness by supporting 10,000g shock in operation. The highest cross-axis isolation is achieved by design from its single silicon integration. For more detailed information regarding the ITG-3050 devices, please refer to the "ITG-3050 Product Specification".

#### 2.2 Software Solutions

This section describes the MotionApps<sup>™</sup> software solutions included with the InvenSense MPU<sup>™</sup> (Motion Processing Unit<sup>™</sup>) and IMU (Inertial Measurement Unit) product families. Please note that the products within the IDG, IXZ, and ITG families do not include these software solutions.

The MotionApps Platform is a complete software solution that in combination with the InvenSense IMU and MPU MotionProcessor™ families delivers robust, well-calibrated 6-axis and/or 9-axis sensor fusion data using its field proven and proprietary MotionFusion™ engine. Solution packages are available for smartphones and tablets as well as for embedded microcontroller-based devices.

The MotionApps Platform provides a turn-key solution for developers and accelerates time-to-market. It consists of complex 6/9-axis sensor fusion algorithms, robust multi-sensor calibration, a proven software architecture for Android and other leading operating systems, and a flexible power management scheme.

The MotionApps Platform is integrated within the middleware of the target OS (the sensor framework), and also provides a kernel device driver to interface with the physical device. This directly benefits application developers by providing a cohesive set of APIs and a well-defined sensor data path in the user-space.



The table below describes the MotionApps software solutions included with the InvenSense MPU and IMU product families.

#### InvenSense MotionProcessor Devices and Included MotionApps Software

|                                                     |                                    | Included                                                  | Software                           |                                                           |                                                                                     |
|-----------------------------------------------------|------------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------|
| Feature                                             | MotionApps                         | Embedded<br>MotionApps                                    | MotionApps<br>Lite                 | Embedded<br>MotionApps<br>Lite                            | Notes                                                                               |
| Part Number                                         | MPU-<br>MPU-                       |                                                           | IMU-:                              | 3000                                                      |                                                                                     |
| Processor Type                                      | Mobile<br>Application<br>Processor | 8/16/32-bit<br>Microcontroller                            | Mobile<br>Application<br>Processor | 8/16/32-bit<br>Microcontroller                            |                                                                                     |
| Applications                                        | Smartphones,<br>tablets            | TV remotes,<br>health/fitness,<br>toys, other<br>embedded | Smartphones,<br>tablets            | TV remotes,<br>health/fitness,<br>toys, other<br>embedded |                                                                                     |
| 6-Axis MotionFusion                                 | Y                                  | es                                                        | Ye                                 | es                                                        | < 2% Application Processor<br>load using on-chip Digital<br>Motion Processor (DMP). |
| 9-Axis MotionFusion                                 | Ye                                 | es                                                        | N                                  | 0                                                         | Reduces processing<br>requirements for embedded<br>applications                     |
| Gyro Bias Calibration                               | Ye                                 | es                                                        | Ye                                 | s                                                         | No-Motion calibration and temperature calibration                                   |
| 3 <sup>rd</sup> Party Compass Cal<br>API            | Ye                                 | es                                                        | N                                  | D                                                         | Integrates 3 <sup>rd</sup> party compass libraries                                  |
| Gyro-Assisted Compass<br>Calibration (Fast Heading) | Ye                                 | es                                                        | N                                  | D                                                         | Quick compass calibration using gyroscope                                           |
| Magnetic Anomaly<br>Rejection<br>(Improved Heading) | Y                                  | es                                                        | N                                  | 0                                                         | Uses gyro heading data<br>when magnetic anomaly is<br>detected                      |

The table below lists recommended documentation for the MotionApps software solutions.

#### Software Documentation

| Platform                  | MotionApps and MotionApps Lite                                                                                                             | Embedded MotionApps and<br>Embedded MotionApps Lite                                                                                |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Software<br>Documentation | <ul> <li>Installation Guide for Linux and Android<br/>MotionApps Platform, v1.9 or later</li> <li>MPL Functional Specifications</li> </ul> | <ul> <li>Embedded MotionApps Platform<br/>User Guide, v3.0 or later</li> <li>Embedded MPL Functional<br/>Specifications</li> </ul> |

For more information about the InvenSense MotionApps Platform, please visit the Developer's Corner or consult your local InvenSense Sales Representative.



## 3 Register Map

The register map for the ITG-3050 is listed below.

| Addr<br>(Hex) | Addr<br>(Decimal) | Register Name    | R/W | Bit7           | Bit6       | Bit5             | Bit4                     | Bit3           | Bit2               | Bit1         | Bit0                 |
|---------------|-------------------|------------------|-----|----------------|------------|------------------|--------------------------|----------------|--------------------|--------------|----------------------|
| 0             | 0                 | WHO_AM_I         | R/W | I2C_IF_<br>DIS |            |                  |                          | ID             |                    |              | -                    |
| С             | 12                | X_OFFS_USRH      | R/W |                |            |                  | X_0                      | FF_H           |                    | A            |                      |
| D             | 13                | X_OFFS_USRL      | R/W |                |            |                  | X_C                      | FF_L           |                    |              |                      |
| E             | 14                | Y_OFFS_USRH      | R/W |                |            |                  | Y_OF                     | FFS_H          |                    |              |                      |
| F             | 15                | Y_OFFS_USRL      | R/W |                |            |                  | Y_OI                     | FFS_L          |                    |              |                      |
| 10            | 16                | Z_OFFS_USRH      | R/W |                |            |                  | Z_OF                     | FFS_H          |                    |              |                      |
| 11            | 17                | Z_OFFS_USRL      | R/W |                |            |                  | Z_01                     | FFS_L          |                    |              |                      |
| 12            | 18                | FIFO_EN          | R/W | TEMP_<br>OUT   |            |                  |                          |                | AUX_<br>YOUT       | AUX_<br>ZOUT | FIFO_<br>FOOTER      |
| 13            | 19                | AUX_VDDIO        | R/W | 0              | 0          | 0                | 0                        | 0              | AUX_<br>VDDIO      | 0            | 0                    |
| 14            | 20                | AUX_SLV_<br>ADDR | R/W | CLKOUT<br>EN   |            |                  |                          | AUX_ID         |                    |              |                      |
| 15            | 21                | SMPLRT_DIV       | R/W |                |            |                  | SMPL                     | RT_DIV         |                    |              |                      |
| 16            | 22                | DLPF_FS_SYNC     | R/W | ΕX             | T_SYNC_SE  | T                | FS_                      | SEL            |                    | DLPF_CFG     | i                    |
| 17            | 23                | INT_CFG          | R/W | ACTL           | OPEN       | LATCH_<br>INT_EN | INT_<br>ANYRD_<br>2CLEAR |                | ITG_<br>RDY_<br>EN | -            | RAW_<br>RDY_EN       |
| 18            | 24                | AUX_ADDR         | R/W |                | BURST_ADDR |                  |                          |                |                    |              | •                    |
| 1A            | 26                | INT_STATUS       | R   | -              |            | -                | -                        | -              | ITG_<br>RDY        |              | RAW_<br>DATA_<br>RDY |
| 1B            | 27                | TEMP_OUT_H       | R   |                |            |                  | TEMP                     | _OUT_H         |                    |              |                      |
| 1C            | 28                | TEMP_OUT_L       | R   |                |            |                  | TEMP                     | _OUT_L         |                    |              |                      |
| 1D            | 29                | GYRO_XOUT_H      | R   |                |            | , i              | GYRO_                    | XOUT_H         |                    |              |                      |
| 1E            | 30                | GYRO_XOUT_L      | R   |                |            |                  | GYRO_                    | XOUT_L         |                    |              |                      |
| 1F            | 31                | GYRO_YOUT_H      | R   |                |            |                  | GYRO_                    | YOUT_H         |                    |              |                      |
| 20            | 32                | GYRO_YOUT_L      | R   |                |            |                  | GYRO_                    | YOUT_L         |                    |              |                      |
| 21            | 33                | GYRO_ZOUT_H      | R   |                |            |                  | GYRO_                    | ZOUT_H         |                    |              |                      |
| 22            | 34                | GYRO_ZOUT_L      | R   |                |            |                  | GYRO_                    | ZOUT_L         |                    |              |                      |
| 23            | 35                | AUX_XOUT_H       | R   |                |            |                  | AUX_>                    | (OUT_H         |                    |              |                      |
| 24            | 36                | AUX_XOUT_L       | R   |                |            |                  | AUX_>                    | (OUT_L         |                    |              |                      |
| 25            | 37                | AUX_YOUT_H       | R   |                |            |                  | AUX_Y                    | ′OUT_H         |                    |              |                      |
| 26            | 38                | AUX_YOUT_L       | R   |                |            |                  | AUX_Y                    | /OUT_L         |                    |              |                      |
| 27            | 39                | AUX_ZOUT_H       | R   |                |            |                  | AUX_Z                    | ZOUT_H         |                    |              |                      |
| 28            | 40                | AUX_ZOUT_L       | R   |                |            |                  | AUX_2                    | ZOUT_L         |                    |              |                      |
| 3A            | 58                | FIFO_COUNTH      | R   | -              | -          | -                | -                        | -              | -                  | FIFO_C       | COUNT_H              |
| 3B            | 59                | FIFO_COUNTL      | R   |                | -          | -                | FIFO_                    | COUNT_L        | -                  | -            |                      |
| 3C            | 60                | FIFO_R           | R   |                |            |                  | FIFO                     | DATA           |                    |              |                      |
| 3D            | 61                | USER_CTRL        | R/W | -              | FIFO_ EN   | AUX_IF_<br>EN    | -                        | AUX_IF_<br>RST | -                  | FIFO_<br>RST | GYRO_RST             |
| 3E            | 62                | PWR_MGM          | R/W | H_RESET        | SLEEP      | STBY_XG          | STBY_YG                  | STBY_ZG        |                    | CLK_SEL      |                      |

Note: Register Names ending in \_H and \_L contain the high and low bytes, respectively of an internal register value. In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and italicized. For example, the AUX\_XOUT\_H register (Register 35) contains the 8 most significant bits, AUX\_XOUT[15:8], of the 16-bit X-Axis auxiliary measurement, AUX\_XOUT.



## 4 Register Descriptions

This section details each register within the InvenSense ITG-3050 gyroscope. Note that any bit that is not defined should be set to zero in order to be compatible with future InvenSense devices.

The register space allows single-byte reads and writes, as well as burst reads and writes. When performing burst reads or writes, the memory pointer will increment until either (1) reading or writing is terminated by the master, or (2) the memory pointer reaches an indirect-read or indirect read/write register (registers 57 and 60).

#### 4.1 Register 0 – Who Am I

#### Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7        | Bit6 | Bit5 | Bit4 | Bit3       | Bit2 | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|-------------|------|------|------|------------|------|------|------|------------------|
| 0                 | 0                     | I2C_IF_ DIS |      |      | -    | 68h or 69h |      |      |      |                  |

#### **Description:**

This register is used to verify the identity of the device, and to enable/disable the I<sup>2</sup>C interface.

#### Parameters:

 I2C\_IF\_DIS
 Setting this bit disables I<sup>2</sup>C access mode.

 ID
 Contains the 6-bit I<sup>2</sup>C address of the device. The Power-On-Reset value of Bit6: Bit1 is 110 100.

Bit0 is reserved. (May be 0 or 1)

#### 4.2 Registers 12 to 17 – Gyro Offsets

#### **Type: Read/Write**

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6     | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |  |  |  |
|-------------------|-----------------------|------|----------|------|------|------|------|------|------|--|--|--|
| С                 | 12                    |      | X_OFFS_H |      |      |      |      |      |      |  |  |  |
| D                 | 13                    |      | X_OFFS_L |      |      |      |      |      |      |  |  |  |
| E                 | 14                    |      | Y_OFFS_H |      |      |      |      |      |      |  |  |  |
| F                 | 15                    |      | Y_OFFS_L |      |      |      |      |      |      |  |  |  |
| 10                | 16                    |      | Z_OFFS_H |      |      |      |      |      |      |  |  |  |
| 11                | 17                    |      | Z_OFFS_L |      |      |      |      |      |      |  |  |  |

#### **Description:**

These registers are used to remove DC bias from the sensor outputs. The values in these registers are subtracted from the gyro sensor values before going into the sensor registers (see registers 27 to 34).



#### Parameters:

| X_OFFS_H/L | 16-bit offset (high and low bytes) of X gyro offset (2's complement) |
|------------|----------------------------------------------------------------------|
| Y_OFFS_H/L | 16-bit offset (high and low bytes) of Y gyro offset (2's complement) |
| Z_OFFS_H/L | 16-bit offset (high and low bytes) of Z gyro offset (2's complement) |

#### 4.3 Register 18 – FIFO Enable

#### Type: Read/Write

| gister<br>lex) | Register<br>(Decimal) | Bit7         | Bit6          | Bit5          | Bit4          | Bit3         | Bit2         | Bit1         | Bit0            | Default<br>Value |
|----------------|-----------------------|--------------|---------------|---------------|---------------|--------------|--------------|--------------|-----------------|------------------|
| 12             | 18                    | TEMP_<br>OUT | GYRO_<br>XOUT | GYRO_<br>YOUT | GYRO_<br>ZOUT | AUX_<br>XOUT | AUX_<br>YOUT | AUX_<br>ZOUT | FIFO_<br>FOOTER | 00h              |

#### **Description:**

These registers determine what data goes into the ITG-3050 FIFO, which is a 512 byte First-In-First-Out buffer (see register 60). Sensor data is automatically placed into the FIFO after each ADC sampling period is complete. The ADC sample rate is controlled by register 21.

The order at which the data is put into the FIFO is from MSB to LSB, which means that it will match the order shown in the parameter detail below. Two bytes are used for each reading. For example, if Gyro X, Gyro Y, Gyro Z, and FIFO\_FOOTER are configured to go into the FIFO, then each sample period the following 8 bytes would be inserted into the FIFO, as shown below:

| Gyro X | Gyro X | Gyro Y | Gyro Y | Gyro Z | Gyro Z | FIFO_     | FIFO_      |
|--------|--------|--------|--------|--------|--------|-----------|------------|
| high   | low    | high   | low    | high   | low    | FOOTER    | FOOTER Low |
| byte   | byte   | byte   | byte   | byte   | byte   | High byte | byte       |

### Parameters:

| TEMP_OUT    | Setting this inserts the Temperature reading into FIFO                     |
|-------------|----------------------------------------------------------------------------|
| GYRO_XOUT   | Setting this inserts the X Gyro reading into FIFO                          |
| GYRO_YOUT   | Setting this inserts the Y Gyro reading into FIFO                          |
| GYRO_ZOUT   | Setting this inserts the Z Gyro reading into FIFO                          |
| AUX_XOUT    | Setting this inserts the X Accelerometer reading into FIFO                 |
| AUX_YOUT    | Setting this inserts the Y Accelerometer reading into FIFO                 |
| AUX_ZOUT    | Setting this inserts the Z Accelerometer reading into FIFO                 |
| FIFO_FOOTER | Last word (2 bytes) for FIFO read. Described in more detail in register 60 |



#### 4.4 Register 19 – AUX (Accel) VDDIO

#### Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2          | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|------|------|------|------|------|---------------|------|------|------------------|
| 13                | 19                    | 0    | 0    | 0    | 0    | 0    | AUX_<br>VDDIO | 0    | 0    | 00h              |

#### **Description:**

This register determines the I/O logic levels for the secondary  $I^2C$  bus clock and data lines (AUX\_CL, AUX\_DA). 1=VDD, 0=VLOGIC.

#### Parameters:

| AUX_VDDIO | I/O logic levels for the secondary I <sup>2</sup> C bus clock and data lines (AUX_CL, |
|-----------|---------------------------------------------------------------------------------------|
|           | AUX_DA). 1=VDD, 0=VLOGIC.                                                             |
| 0         | Load zeros into Bits 0, 1, 3-7.                                                       |

#### 4.5 Register 20 – AUX (Accel) Slave Address

#### Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7          | Bit6 | Bit5 | Bit4 | Bit3   | Bit2 | Bit1 | Bit0 | Default<br>value |
|-------------------|-----------------------|---------------|------|------|------|--------|------|------|------|------------------|
| 14                | 20                    | CLKOU<br>T_EN |      |      |      | AUX_ID |      |      |      | 00h              |

#### **Description:**

This register contains the 7-bit slave address of the external accelerometer device. This address is used to access the accel device so that its sensor reading can be automatically read during each sample period at the same time as the gyro sensors.

When reading the accel sensor registers, the ITG-3050 takes over the secondary  $I^2C$  bus, as a master to the accel device, performing a burst read of the sensor registers. For this interface to be active, the  $AUX_{IF}EN$  flag in the User Control register (61) must be set (set to 1).

Whenever changing this register, the accel interface must be reset to take effect. Refer to the User Control register (61).

#### Parameters:

- *AUX\_ID* Contains the I<sup>2</sup>C address of the device, which can also be changed by writing to this register.
- CLKOUT\_EN 1 reference clock output is provided at CLKOUT pin
  - 0 function is disabled.



#### 4.6 Register 21 – Sample Rate Divider

#### **Type: Read/Write**

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6 | Bit5 | Bit4  | Bit3   | Bit2 | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|------|------|------|-------|--------|------|------|------|------------------|
| 15                | 21                    |      |      |      | SMPLI | RT_DIV |      |      |      | 00h              |

#### **Description:**

This register determines the sample rate of the ITG-3050 gyros. The analog gyros are sampled internally at either 1kHz or 8kHz, determined by the *DLPF\_CFG* setting (see register 22). This sampling is then filtered digitally and delivered into the sensor registers after the number of cycles determined by this register. The sample rate is given by the following formula:

 $F_{sample} = F_{internal} / (divider+1)$ , where  $F_{internal}$  is either 1kHz or 8kHz

As an example, if the internal sampling is at 1kHz, then setting this register to 7 would give the following:

 $F_{sample} = 1kHz / (7 + 1) = 125Hz$ , or 8ms per sample

#### Parameters:

*SMPLRT\_DIV* Sample rate divider: 0 to 255

#### 4.7 Register 22 – DLPF, Full Scale, External Sync

#### **Type: Read/Write**

|   | Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6      | Bit5 | Bit4 | Bit3 | Bit2 | Bit1     | Bit0 | Default<br>Value |
|---|-------------------|-----------------------|------|-----------|------|------|------|------|----------|------|------------------|
| ĺ | 16                | 22                    | EX   | T_SYNC_SE | Т    | FS_  | SEL  |      | DLPF_CFG | -    | 00h              |

#### **Description:**

This register configures several parameters related to the sensor acquisition.

The *EXT\_SYNC\_SET* parameter allows capturing the state of the external frame synchronization input pin (FSYNC, pin 11). The value of this input can be inserted into the LSB of one of the sensor registers. The register chosen is as follows:

| EXT_SYNC_SET |                   |
|--------------|-------------------|
| EXT_SYNC_SET | Register          |
| 0            | No sync (default) |
| 1            | TEMP_OUT_L[0]     |
| 2            | GYRO_XOUT_L[0]    |
| 3            | GYRO_YOUT_L[0]    |
| 4            | GYRO_ZOUT_L[0]    |
| 5            | AUX_XOUT_L[0]     |
| 6            | AUX_YOUT_L[0]     |
| 7            | AUX_ZOUT_L[0]     |



The *FS\_SEL* parameter allows setting the full-scale range of the gyro sensors, as described in the table below.

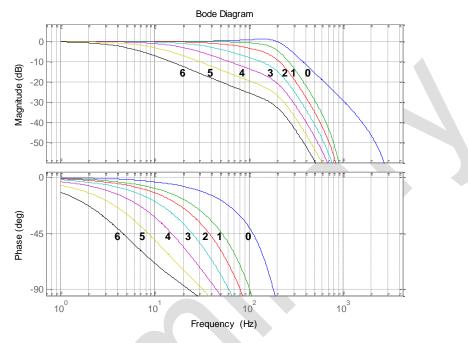
| FS  | SEL  |  |
|-----|------|--|
| гэ_ | _SEL |  |

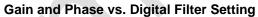
| FS_SEL | Gyro Full-Scale Range |
|--------|-----------------------|
| 0      | ±250°/sec             |
| 1      | ±500°/sec             |
| 2      | ±1000°/sec            |
| 3      | ±2000°/sec            |

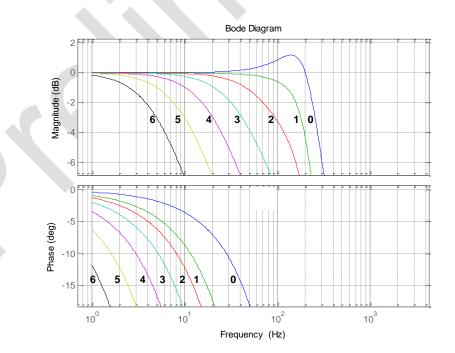
The *DLPF\_CFG* parameter sets the digital low pass filter configuration. It also determines the internal analog sampling rate used by the device as shown in the table below.

| DLPF_CFG | Low Pass Filter Bandwidth | Analog Sample Rate |
|----------|---------------------------|--------------------|
| 0        | 256Hz                     | 8kHz               |
| 1        | 188Hz                     | 1kHz               |
| 2        | 98Hz                      | 1kHz               |
| 3        | 42Hz                      | 1kHz               |
| 4        | 20Hz                      | 1kHz               |
| 5        | 10Hz                      | 1kHz               |
| 6        | 5Hz                       | 1kHz               |

## DLPF\_CFG


#### Parameters:


*EXT\_SYNC\_SET* Routing for the external frame synchronization input bit


- FS\_SEL Full scale selection for gyro sensor data
- *DLPF\_CFG* Digital low pass filter configuration



**DLPF Characteristics:** The gain and phase responses of the digital low pass filter settings (*DLPF\_CFG*) are shown below:







Gain and Phase vs. Digital Filter Setting, Showing Passband Details



#### 4.8 Register 23 – Interrupt Configuration

#### **Type: Read/Write**

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6 | Bit5             | Bit4                     | Bit3 | Bit2               | Bit1 | Bit0               | Default<br>Value |
|-------------------|-----------------------|------|------|------------------|--------------------------|------|--------------------|------|--------------------|------------------|
| 17                | 23                    | ACTL | OPEN | LATCH_<br>INT_EN | INT_<br>ANYRD_<br>2CLEAR | -    | ITG_<br>RDY_<br>EN | -    | RAW_<br>RDY_<br>EN | 00h              |

#### **Description:**

This register configures the interrupt operation of the ITG-3050. The interrupt output pin (INT) configuration can be set, the interrupt latching/clearing method can be set, and the triggers for the interrupt can be set. If LATCH\_INT\_EN = 1, the INT pin is held active until the interrupt status register is cleared.

Note that if the application requires reading every sample of data from the ITG-3050, it is best to enable the raw data ready interrupt (*RAW\_RDY\_EN*). This allows the application to know when new sample data is available.

#### Parameters:

| ACTL             | Logic level for INT output pin – 1=active low, 0=active high                                                                        |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| OPEN             | Drive type for INT output pin – 1=open drain, 0=push-pull                                                                           |
| LATCH_INT_EN     | Latch mode – 1=latch until interrupt is cleared, 0=50us pulse                                                                       |
| INT_ANYRD_2CLEAR | Interrupt status register clear method – 1=clear by reading any register,<br>0=clear by reading interrupt status register (26) only |
| ITG_RDY_EN       | Enable interrupt when device is ready (PLL ready after changing clock source)                                                       |
| RAW_RDY_EN       | Enable interrupt when data is available                                                                                             |

#### 4.9 Register 24 – AUX (Accel) Burst Read Address

#### Type: Read only

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6 | Bit5 | Bit4  | Bit3  | Bit2 | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|------|------|------|-------|-------|------|------|------|------------------|
| 18                | 24                    |      |      |      | BURST | _ADDR |      |      |      | 00h              |

#### **Description:**

This register configures the burst-mode-read starting address for an accelerometer attached to the secondary I2C bus of the ITG-3050



#### Parameters:

BURST\_ADDR Burst-mode read starting address for external accelerometer attached to secondary I2C bus of the ITG-3050. This is the starting address of the accelerometer which the ITG-3050 could use to read from.

#### 4.10 Register 26 – Interrupt Status

#### Type: Read only

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2        | Bit1 | Bit0                 | Default<br>Value |
|-------------------|-----------------------|------|------|------|------|------|-------------|------|----------------------|------------------|
| 1A                | 26                    | -    | -    | -    | -    | -    | ITG_<br>RDY | -    | RAW_<br>DATA_<br>RDY | 00h              |

#### **Description:**

This register is used to determine the status of the ITG-3050 interrupt. Whenever one of the interrupt sources is triggered, the corresponding bit will be set. The polarity of the interrupt pin (active high/low) and the latch type (pulse or latch) has no effect on these status bits.

In normal use, the *RAW\_DATA\_RDY* interrupt is used to determine when new sensor data is available in either the sensor registers (27 to 34) or in the FIFO (60).

Interrupt Status bits get cleared as determined by INT\_ANYRD\_2CLEAR in the interrupt configuration register (23).

#### Parameters:

ITG\_RDY PLL ready

RAW\_DATA\_RDY Raw data or FIFO data is ready

#### 4.11 Registers 27 to 40 – Sensor Registers

#### Type: Read only

|   | Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6        | Bit5 | Bit4  | Bit3   | Bit2 | Bit1 | Bit0 | Default<br>Value* |  |
|---|-------------------|-----------------------|------|-------------|------|-------|--------|------|------|------|-------------------|--|
|   | 1B                | 27                    |      | TEMP_OUT_H  |      |       |        |      |      |      |                   |  |
|   | 1C                | 28                    |      | TEMP_OUT_L  |      |       |        |      |      |      |                   |  |
|   | 1D                | 29                    |      | GYRO_XOUT_H |      |       |        |      |      |      |                   |  |
|   | 1E                | 30                    |      |             |      | GYRO_ | XOUT_L |      |      |      | 00h               |  |
| Ī | 1F                | 31                    |      | GYRO_YOUT_H |      |       |        |      |      |      | 00h               |  |
| Ē | 20                | 32                    |      | GYRO_YOUT_L |      |       |        |      |      |      | 00h               |  |
| Ī | 21                | 33                    |      | GYRO_ZOUT_H |      |       |        |      |      |      | 00h               |  |
| Ē | 22                | 34                    |      |             |      | GYRO_ | ZOUT_L |      |      |      | 00h               |  |
| Ē | 23                | 35                    |      | AUX_XOUT_H  |      |       |        |      |      |      | 00h               |  |
| l | 24                | 36                    |      |             |      | AUX_> | (OUT_L |      |      |      | 00h               |  |
| F | 25                | 37                    |      | AUX_YOUT_H  |      |       |        |      |      |      | 00h               |  |
| l | 26                | 38                    |      | AUX_YOUT_L  |      |       |        |      |      |      | 00h               |  |
| l | 27                | 39                    |      | AUX_ZOUT_H  |      |       |        |      |      |      | 00h               |  |
| ſ | 28                | 40                    |      | AUX_ZOUT_L  |      |       |        |      |      |      |                   |  |

\*Default Value applies if sensor is disabled.



#### **Description:**

These registers contain the gyro, temperature and auxiliary (accel) sensor data for the ITG-3050. At any time, these values can be read from the device; however it is best to use the interrupt function to determine when new data is available.

Before being placed into these registers, the sensor data are first manipulated by the full scale setting (register 22) and the offset settings (registers 12 to 17).

#### Parameters:

| TEMP_OUT_H/L  | 16-bit temperature data (2's complement data format)     |
|---------------|----------------------------------------------------------|
| GYRO_XOUT_H/L | 16-bit X gyro output data (2's complement data format)   |
| GYRO_YOUT_H/L | 16-bit Y gyro output data (2's complement data format)   |
| GYRO_ZOUT_H/L | 16-bit Z gyro output data (2's complement data format)   |
| AUX_XOUT_H/L  | 16-bit X aux (accel) output data (as available from aux) |
| AUX_YOUT_H/L  | 16-bit Y aux (accel) output data (as available from aux) |
| AUX_ZOUT_H/L  | 16-bit Z aux (accel) output data (as available from aux) |

#### 4.12 Registers 58 to 59 – FIFO Count

#### Type: Read only

| Register<br>(Hex) | Register<br>(Decimal) | Bit7         | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1    | Bit0   | Default<br>Value |
|-------------------|-----------------------|--------------|------|------|------|------|------|---------|--------|------------------|
| ЗA                | 58                    | -            | -    | -    | -    | -    | -    | FIFO_CO | DUNT_H | 00h              |
| 3B                | 59                    | FIFO_COUNT_L |      |      |      |      |      | 00h     |        |                  |

#### **Description:**

This register indicates how many bytes of valid data are contained in the FIFO. The FIFO can contain up to 512 bytes of data

If the FIFO gets filled up completely, the length will read 512. In this state, the ITG-3050 continues to put new sensor data into the FIFO, thus overwriting old FIFO data. Note, however, that the alignment of sensor data can change in this overflow condition. InvenSense recommends resetting the FIFO if an overflow condition occurs (use register 61), which will clear out the FIFO.

#### Parameters:

*FIFO\_COUNT\_H/L* Number of bytes currently in FIFO



#### 4.13 Register 60 – FIFO Data

#### Type: Read only

| Register<br>(Hex) | Register<br>(Decimal) | Bit7 | Bit6      | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|------|-----------|------|------|------|------|------|------|------------------|
| 3C                | 60                    |      | FIFO_DATA |      |      |      |      |      | 00h  |                  |

#### Parameters:

FIFO DATA Contains the FIFO data

#### **Description:**

This is the output register of the FIFO. Each read of this register gets the oldest contents of the ITG-3050 FIFO buffer. The data that goes in is determined by the FIFO enable registers (18 and 19).

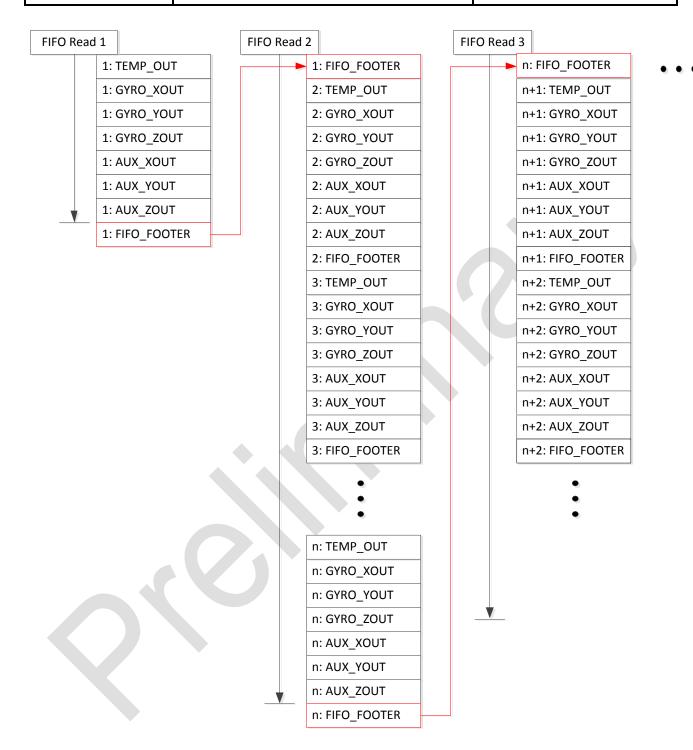
A burst read is required for reading *multiple* bytes from this register, since any read on this register causes an auto increment and a prefetch to occur.

Proper operation of the FIFO requires that at least one word (2 bytes) of data be left in the FIFO during any read operation. To implement this, it is recommended that one extra word be added to the end of the FIFO data so that all desired data can be read at each cycle, leaving the extra word remaining in the FIFO. This extra word will be read out (first) during the next read operation on the FIFO.

Data is read into the FIFO in the following order:

| TEMP_OUT    | Temperature                                  |
|-------------|----------------------------------------------|
| GYRO_XOUT   | X Gyro                                       |
| GYRO_YOUT   | Y Gyro                                       |
| GYRO_ZOUT   | Z Gyro                                       |
| AUX_XOUT    | X Accelerometer high and low bytes (2 bytes) |
| AUX_YOUT    | Y Accelerometer high and low bytes (2 bytes) |
| AUX_ZOUT    | Z Accelerometer high and low bytes (2 bytes) |
| FIFO_FOOTER | Last word for FIFO read (2 bytes)            |

For example, if it is desired to obtain temp, gyro, and accel data from the FIFO, then one should also add one of the aux ADC readings (the required extra word) into the FIFO enable registers (18 or 19) in addition to the desired data. As shown in the figure below, the first time data is written to the FIFO, the FIFO will contain: *TEMP\_OUT, GYRO\_XOUT, GYRO\_YOUT, GYRO\_ZOUT, AUX\_XOUT, AUX\_YOUT, AUX\_ZOUT, and FIFO\_FOOTER*. The first FIFO read will read all but the *FIFO\_FOOTER* data, which will be read in the 2<sup>nd</sup> FIFO read. In the 2<sup>nd</sup> FIFO read, the *FIFO\_FOOTER* data that was left over from the previous read is read out first, followed by all but the last *FIFO\_FOOTER* data in the FIFO. This pattern of reading is continued, as shown in the figure below.


Note that the first FIFO read is similar to the subsequent reads in that one word of data is always left in the FIFO. It differs, though, in that in subsequent reads the leftover data from the previous read is read first; however, for the first read there is no leftover data from a previous read.



Document Number: RM-ITG-3050-00 Revision: 1.1 Release Date: 05/19/2011

If the FIFO is allowed to overflow, it operates as a circular buffer in which at any time it contains the most recent 512 bytes. Recommended operation in this mode is to disable data going into the FIFO prior to reading the FIFO to avoid pointer conflicts. After halting the FIFO input, the 512 bytes in the FIFO should be read out in a single burst read. The first byte read will not be valid.





Reading from the FIFO



#### 4.14 Register 61 – User Control

#### Type: Read/Write

| Regi:<br>(He |   | Register<br>(Decimal) | Bit7 | Bit6        | Bit5          | Bit4 | Bit3           | Bit2 | Bit1         | Bit0         | Default<br>Value |
|--------------|---|-----------------------|------|-------------|---------------|------|----------------|------|--------------|--------------|------------------|
| 30           | D | 61                    | -    | FIFO_<br>EN | AUX_IF_<br>EN | -    | AUX_IF_<br>RST | -    | FIFO_<br>RST | GYRO_<br>RST | 00h              |

#### **Description:**

This register is used to enable various modes on the ITG-3050, as well as reset these functions.

For each of the functions that can be enabled, the function should be reset at the same time to assure it works properly. Note that the reset bits in the register are automatically cleared after the function is reset.

When  $AUX_{IF}_{EN}$  is set to 1, I<sup>2</sup>C Master Mode is enabled. In this mode, the ITG-3050 acts as the I<sup>2</sup>C Master to the external slave device. When this bit is cleared to 0, the auxiliary I<sup>2</sup>C bus lines (AUX\_DA and AUX\_CL) are logically driven by the primary I<sup>2</sup>C bus (SDA and SCL).

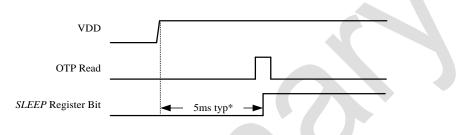
#### Parameters:

| FIFO_EN    | Enable FIFO operation for sensor data                                                                                                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUX_IF_EN  | Enable 3 <sup>rd</sup> -party accelerometer interface via I <sup>2</sup> C<br>Clear this bit to enable Bypass Mode - allows host processor direct access to the 3 <sup>rd</sup> -<br>party accelerometer |
| AUX_IF_RST | Reset third-party accelerometer interface function; set this only after changing AUX_IF_EN to 0.                                                                                                         |
| FIFO_RST   | Reset FIFO function; set this to clear FIFO or when changing FIFO_EN                                                                                                                                     |
| GYRO_RST   | Reset gyro analog and digital functions                                                                                                                                                                  |

#### 4.15 Register 62 – Power Management

#### Type: Read/Write

| Register<br>(Hex) | Register<br>(Decimal) | Bit7    | Bit6  | Bit5        | Bit4        | Bit3        | Bit2    | Bit1 | Bit0 | Default<br>Value |
|-------------------|-----------------------|---------|-------|-------------|-------------|-------------|---------|------|------|------------------|
| 3E                | 62                    | H_RESET | SLEEP | STBY<br>_XG | STBY<br>_YG | STBY_Z<br>G | CLK_SEL |      | 00h  |                  |


#### **Description:**

This register is used to manage the power control, select the clock source, and to issue a master reset to the device.



Setting the *SLEEP* bit in the register puts the device into a low power sleep mode. In this mode, only the serial interface and internal registers remain active, allowing for a very low standby current. Clearing this bit puts the device back into normal mode. The individual standby selections for each of the gyros should be used if any of them are not used by the application.

The power-up sequence of the *SLEEP* register bit is shown in the figure below. After VDD is applied to the part, SLEEP is initially low (part in normal operating mode). A short while afterwards, the internal charge pumps are brought up, and the part's OTP memory is read, and *SLEEP* is set high, thus putting the part into its low-power sleep mode. The part stays in this mode until the register bit is cleared.



#### Power-Up Sequence of SLEEP Register Bit

\*Note: characterization data for this timing spec will be available upon characterization of Rev F devices.

The CLK\_SEL setting determines the device clock source as follows:

.....

| CLK_SEL |                                              |
|---------|----------------------------------------------|
| CLK_SEL | Clock Source                                 |
| 0       | Internal oscillator                          |
| 1       | PLL with X Gyro reference                    |
| 2       | PLL with Y Gyro reference                    |
| 3       | PLL with Z Gyro reference                    |
| 4       | PLL with external 32.768kHz reference        |
| 5       | PLL with external 19.2MHz reference          |
| 6       | Reserved                                     |
| 7       | Stop clock and synchronous reset clock state |

On power up, the ITG-3050 defaults to the internal oscillator. It is highly recommended that the device is configured to use one of the gyros (or an external clock) as the clock reference, due to the improved stability.

#### Parameters:

- *H\_RESET* Reset device and internal registers to the power-up-default settings
- SLEEP Enable low power sleep mode
- STBY\_XG Put gyro X in standby mode (1=standby, 0=normal)
- STBY\_YG Put gyro Y in standby mode (1=standby, 0=normal)
- STBY\_ZG Put gyro Z in standby mode (1=standby, 0=normal)
- CLK\_SEL Select device clock source



This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

InvenSense® is a registered trademark of InvenSense, Inc. ITG-3050<sup>™</sup>, MPU<sup>™</sup>, MotionProcessing Unit<sup>™</sup>, MotionProcessor<sup>™</sup>, MotionApps<sup>™</sup>, MotionFusion<sup>™</sup>, Digital Motion Processor<sup>™</sup>, and DMP<sup>™</sup> are trademarks of InvenSense, Inc.

©2011 InvenSense, Inc. All rights reserved.

